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Simplifying social learning
Highlights
Social interactions present complex
learning challenges.

Recent computationalmodels of learning
assume people negotiate a tradeoff be-
tween complex-but-difficult behavior
and easy-but-simple behavior.

Humans have social expertise that lets
them simplify difficult learning problems,
reducing detailed scenarios to familiar
social concepts that can subsequently
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Social learning is complex, but people often seem to navigate social environ-
ments with ease. This ability creates a puzzle for traditional accounts of rein-
forcement learning (RL) that assume people negotiate a tradeoff between easy-
but-simple behavior (model-free learning) and complex-but-difficult behavior
(e.g., model-based learning). We offer a theoretical framework for resolving this
puzzle: although social environments are complex, people have social expertise
that helps them behave flexibly with low cognitive cost. Specifically, by using
familiar concepts instead of focusing on novel details, people can turn hard
learning problems into simpler ones. This ability highlights social learning as a
prototype for studying cognitive simplicity in the face of environmental complex-
ity and identifies a role for conceptual knowledge in everyday reward learning.
guide learning.

People can therefore use learning strate-
gies that achieve flexible social behavior
with easy cognition, using the earlier
work of concept development to simplify
the later work of complex choice.

Accounting for pre-existing conceptual
knowledge and expertise can enrich
models of reinforcement learning in famil-
iar environments.

1University of Southern California,
Los Angeles, CA 90089, USA
2Stanford University, Stanford,
CA 94305, USA
3University of Delaware, Newark,
DE 19716, USA

*Correspondence:
lhackel@usc.edu and
https://www.hackellab.org
(L.M. Hackel).
Challenges of social learning
Social learning is a vital but complex task. To navigate social life, people must remember a diverse
array of people and interactions, reason about relationships between people, and learn that different
behaviors are appropriate in different social settings. Social learning therefore would seem to require
complex learning computations [1], and social cognitionwould seem to support complex planning [2].

Yet, people often seem to navigate social interactions intuitively, and people need to manage their
social lives without computational overload. Social complexity therefore creates a puzzle: how do
people seem to learn easily in social interactions in the face of staggering complexity? Here, we
outline complex and simple strategies represented in recent computational models of learning
and then present an expanded framework that can address this puzzle. This framework identifies
how RL can give rise to complex social cognition and social behavior. Through this approach, we
offer a mechanistic view that integrates social concepts with computational underpinnings of
cognition and informs how RL can explain complex real-world choices.

Complexity in social learning
One account of how people navigate social interactions draws on cognitive models of RL. Such
models describe how people learn by performing actions and experiencing reward feedback
[3,4]. Formally, RL is often studied in cases defined by states of the world (e.g., locations in a
maze), actions (e.g., turning left or right), and rewards (e.g., food). An agent’s goal is to choose
actions that maximize its long-run expected future reward, given that any action it takes will influ-
ence which state it moves into next.

Learners can use distinct algorithms to solve this challenge. In model-free learning [4] (see
Glossary), a learner directly estimates the long-run value of an action based on past experience.
This learner does not need any internal model of the environment explaining how or why their ac-
tion produced reward. Instead, they can simply repeat previously rewarded actions, averaging
across past experiences to assign values to actions. When rewards are better than expected,
people become more likely to repeat the same action, whereas when rewards are worse than
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Glossary
Abstractions: representations that
result from identifying commonalities
across distinct objects or events.
Cognitive map: a mental
representation that identifies relationships
between states of theworld, actions, and/
or stimuli.
Episodic memory: memory for a
specific event that is tied to a particular
time and place.
Episodic reinforcement learning: a
class of RL algorithm that samples the
details of specific past events to estimate
the expected value of actions.
Generalization: transferring
knowledge acquired in one context to a
different context.
Knowledge structure: a network of
interconnected concepts that includes
concepts and associations between
them.
Model-based learning: a class of RL
algorithms that uses an internal model of
the environment to compute the
expected value of actions.
Model-free learning: a class of RL
algorithms that learns the expected
value of actions by performing those
actions and receiving reward feedback.
Semantic concept: a category that
groups distinct objects, events,
patterns, or people underneath a
common abstract label, like justice, love,
or family.
Trait: stable characteristics inferred
from observed behaviors.
expected, people become less likely to repeat the same action. When people interact with others,
they might similarly learn who to approach or avoid through model-free reward feedback. For in-
stance, if a student visits Dr Smith’s office and receives extensive help each time, they may learn
that the action ‘approach Dr Smith’ leads to reward.

Although model-free learning is computationally simple, it is relatively inflexible. First, because it
focuses on past rewards with no understanding of the environment, it performs poorly when
faced with new environments or options [5]. Model-free learners may repeat rewarded actions
habitually, even when an action no longer advances one’s goals – for instance, visiting
Dr Smith even after passing her class [6]. In addition, because reward was attached specifically
to the action approach Dr Smith, a model-free learner would not generalize to new professors
who could help during office hours [7]. Second, becausemodel-free learning averages across ex-
periences, it is slow and incremental. A model-free learner would therefore display poor one-shot
learning [8], such as learning to approach Dr Smith for help after hearing her deliver a particularly
illustrative analogy in class, and would learn inefficiently about context-dependent rewards, such
as learning that Dr Smith provides rewarding advice about physics but not about relationships [8].

A second, more sophisticated way people learn about others is through a class of algorithms
known asmodel-based learning,wherein learners employ an internal model of the world to un-
derstand how to reach reward [4]. Rather than directly learning the long-run value of each action,
model-based learners evaluate actions in terms of how they lead to new states of the world. Spe-
cifically, model-based learners can build a cognitive map of the environment that identifies how
different states relate to one another and/or how actions lead to outcomes, allowing them to plan
new routes to reward [7,9–12] (Figure 1A, Key figure). For instance, a student could recognize
that Dr Smith and Dr Jones play analogous roles in the classroom; reason that both have relevant
knowledge, duties, and interests; and infer that visiting Dr Jones will lead to a positive outcome as
well. This kind of generalization is a hallmark of flexible behavior. A model-based learner can
also adapt their behavior quickly, immediately using new knowledge about their environment to
plan a path to reward [13]. However, model-based learning has a steep computational price, re-
quiring slow, effortful deliberation, which people prefer to avoid [14–16].

A third learning strategy, which also allows flexible decisions, is episodic RL. Here, learners draw
on details of particular episodes to estimate future rewards [17,18]. Like nonparametric statistical
methods, this strategy allows nonparametric approximation of the value of an action, sampling
details of individual events rather than storing a world model or averaging over experiences. Ep-
isodic RL allows people to learn from small amounts of data, such as a single social interaction
(Figure 1B) [8]. In addition, by storing event details in episodic memory, people can later identify
features of the episode relevant to predicting reward, flexibly drawing on past experience in new
situations [17]. Finally, episodic RL can support context-dependent choice. People encode rich
details of the temporal, visual, and spatial context of events, and reencountering those details
can sparkmemories of events from that context, leading people to make contextually appropriate
decisions [19]. For example, after recalling a fall afternoon on which Dr Smith gave an illuminating
explanation of general relativity, a student might turn to Dr Smith for help understanding special
relativity (but not for advice on method acting). However, storing and sifting through large
amounts of information can carry representational and attentional costs [20–22].

Flexible choice can thus emerge from building a world model that identifies relations between
entities (model-based learning) and from encoding details of events (episodic RL), both of
which entail cognitive costs. Both strategies have increasingly been linked to shared roots in
the hippocampus, which supports multiple kinds of relational memory, or memories that bind
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Figure 1. People can encode action and reward in multiple ways in social interaction. In this example, a student approaches
Dr Smith’s office and experiences illuminating help, providing a rewarding experience. (A) To achieve complex behavior, a
learner could use a model of the world, instantiated in a cognitive map, that specifies Dr Smith’s role in the class in relation
to students and/or that specifies a causal model explaining why approaching Dr Smith will lead to reward. By using this
cognitive map, a student can generalize to a new professor (Dr Jones), recognizing that a new professor occupies the
same role and will lead to the same outcomes. (B) Through episodic memory, the student could encode details of the
exact interaction in which they received help. By later retrieving these details, they can make flexible choices based on any
features present in the interaction. (C) In traditional model-free learning, the student associates Dr Smith with reward. This
learner would not generalize to new choices, such as visiting Dr Jones. (D) Through social expertise, a student could use
an abstract representation of ‘approach the professor’ and learn this action yields reward; this learning can be model-free,
with no consideration of why the professor led to reward. Such a learner could generalize with low cognitive effort to a
new individual categorized as a professor. (E) Through expertise, the student could encode an abstract representation of a
specific interaction with the professor, reducing details to a gist summary indicating the professor was helpful. The student
could generalize this simpler representation to a diverse array of new situations, such as asking the professor for help
fixing a broken bicycle or asking for a letter of recommendation.
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entities together [13]. This includes traditional episodic memory, which binds together details of
an event, as well as forming associations between stimuli, recognizing configurations of features,
and building a cognitive map of the environment (Box 1) [8,10,11,13,23].
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Box 1. Brain bases of abstract reward generalization

When people generalize reward learning across novel abstract roles, representations of task structure have been observed
in hippocampus (HC) and ventromedial prefrontal cortex (vmPFC)/orbitofrontal cortex (OFC) in some studies [10,11], and
in dorsolateral prefrontal cortex (dlPFC) and rostrolateral prefrontal cortex (rlPFC) in other studies [12] (Figure I). Responses
in HC/OFC have been proposed to reflect a cognitive map used to form novel inferences, whereas responses in dlPFC/
rlPFC have been proposed to reflect action control in light of task structure [94,95].

When people generalize familiar knowledge, rlPFC activation appears to dissipate, potentially reflecting a shift to-
ward automaticity [96]. In these cases, what regions represent abstract relations? One possibility is that HC and
vmPFC/OFC represent cognitive maps of both novel and familiar relations. Supporting this view, vmPFC and HC
have been implicated when people use familiar schemas to encode new information [97]. In social interactions,
HC responses reflect a partner’s position in a cognitive map of power and affiliation – two familiar social dimen-
sions [98]. Similarly, responses in lateral OFC reflect the influence of trait knowledge on context-dependent social
choices [99].

However, studies of abstract social choice typically examine goal-directed decisions, in which people explicitly draw on
social knowledge to navigate an environment. During model-free learning, a second possibility is that distinct neural re-
gions represent abstract inputs to reinforcement.

Social abstraction is linked to several default mode network structures–regions that respond more at rest and less during
effortful tasks [100]. First, posterior superior temporal sulcus (pSTS) responds when people perceive social relations
[101,102], and pSTS has been proposed to help compose a gestalt cortex that underlies effortless understanding of
scenes [103]. Second, anterior temporal lobe (ATL) responds when people consider semantic social concepts
[104,105] and stores abstract social knowledge about specific individuals [67]. Finally, dorsomedial prefrontal cortex
(dmPFC) responds when people spontaneously form abstract impressions from specific social behaviors [106,107]. Indi-
viduals who report greater social expertise show stronger responses in dmPFC when they form abstract explanations of
social behaviors versus nonsocial events [108].

Altogether, these regions may support effortless social abstraction. Indeed, when people reason about social (vs. non-
social) relations, they respond more quickly and show stronger responses in pSTS and dmPFC; by contrast, reasoning
about nonsocial relations involves stronger responses in the HC [55]. Future work can test whether regions linked to
social abstraction support model-free abstract RL or whether common regions represent abstract relations across
goal-directed and model-free learning.

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure I. Brain regions linked to generalization and social abstraction. Approximate locations of brain regions
linked to representations of task structure and social abstraction. Abbreviations: ATL, anterior temporal lobe; dlPFC,
dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; HC, hippocampus; OFC, orbitofrontal cortex;
pSTS, posterior superior temporal sulcus; rlPFC, rostrolateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex.
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In the case of social cognition, people do use cognitive maps of social ties to infer what new in-
dividuals will be like [10,24], use social knowledge to plan paths to rewards [2], and recall details
of interactions to decide who to approach again [8]. Yet, humans do not have unlimited cognitive
resources. The question then remains, how do people often navigate complex social interactions
with apparent ease?

Simplifying social learning: traditional accounts of reinforcement
Traditional learning accounts assume people navigate tradeoffs between easy-but-simple behavior
and complex-but-difficult behavior: for instance, people use both model-based and model-free
learning to some degree, but when people have fewer cognitive resources available or less motiva-
tion to exert effort, they revert to model-free learning [14,25]. This traditional view suggests one
straightforward answer to simplifying social learning: if complex learning grows difficult, people
could rely on simpler reward learning algorithms (Figure 1C).

Do people form simple reward associations in social interactions? A growing body of
evidence indicates the answer is yes, with simple reward learning complementing more com-
plex forms of behavior. People gravitate toward partners who provide rewarding outcomes,
such as money or acceptance, even when these rewards do not reflect a partner’s character
or intentions [26–30]. For instance, if two individuals share half their resources, they reveal
equivalent generosity, but if one starts with US$10 and one starts with US$15, the latter of-
fers a greater reward. People persist in choosing rewarding partners even after reward con-
tingencies change and these partners no longer offer greater benefits [26,29,30], consistent
with the proposal that people form social habits [6]. By prompting positive affect, rewards
also lead people to like others more and see others in a more favorable light [26,27,30].
This kind of reward learning has been linked to ventral striatum [26] – a key region for pos-
itive affect and reward-based reinforcement [31,32] – and in tasks dissociating model-free
and model-based reinforcement, model-free learning has been found to contribute to social
evaluations [28,33].

Although this kind of learning may not predominate in social behavior, it can have important
consequences for social outcomes, including economic inequality [34,35], ostracism [36], in-
tergroup relations [30,33], and interactions online. Online behavior offers a useful real-world
test case, given that people receive quantifiable feedback in the form of likes, which activate
common reward pathways in ventral striatum [37]. The extent to which people generate
posts, express outrage, or spread misinformation on social media follows principles of reward
learning and habit [38–40].

Yet, people often seem to adaptively navigate even complex social environments without cogni-
tive overload. How might people go beyond simple reward associations without taking on addi-
tional cognitive labor? We next describe an expanded account that identifies routes to more
complex behavior without more difficult cognition.

Simplifying social learning: an expertise account of reinforcement
Humans have social expertise: from infancy, humans spend countless hours paying attention to
and interacting with other humans. Through these experiences, people develop a wealth of ab-
stract semantic concepts that organize the world into meaningful units with linguistic labels
(e.g., family) [41]. We propose that expertise allows flexible decision-making with low cognitive
cost, helping people turn difficult learning problems into easier ones. Specifically, expertise can
simplify how people think about relations between elements of an event (as in a world model)
and details of events (as in remembering particular episodes).
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Expertise allows people to easily represent their environment using familiar abstract concepts. Ab-
stract concepts collapse across distinct objects and events to identify higher-level commonalities
making them functionally equivalent [42,43]. For example, the social category ‘waiter’ collapses
across a variety of people to identify commonalities: they are restaurant employees who take orders
and deliver food. Abstract concepts can simplify social interactions by focusing individuals on aspects
that matter for their goals and omitting those that do not. Knowing that the person you are talking to is
a waiter provides structure to the interaction – it allows you to infer what kinds of questions they can
answer, what topics are appropriate, and what role they play in your dining experience. That said, a
customer would not need to remember details of the waiter’s eye color or favorite hobbies to order
food. This process corresponds to state abstraction in RL, in which a learner reduces the size of a
state space by treating distinct states of the world as equivalent, thus simplifying learning [44,45].

While the work of acquiring abstract social concepts occurs over an extended period of develop-
ment [46,47], once this work is performed, social concepts can easily be applied to new circum-
stances without retrieving details of the events through which the concepts were formed [48].
With experience, knowledge becomes semanticized, shifting from detailed knowledge of specific
events held in episodic memory (‘I was at Washington Square Park last Saturday’) to more general
fact-like knowledge held in semantic memory (‘I pass Washington Square Park on my way to
work’) [48,49]. More generally, with extensive practice, effortful cognition can become automatic,
spontaneous, and effortless [50]. Finally, language also facilitates reasoning about abstract relation-
ships [51,52], and semantic concepts provide people with linguistic labels that help them easily rec-
ognize abstractions. Although non-experts can also recognize abstract commonalities, expertise
and language thus let people do so with greater ease [51,53].

Consistent with a social expertise perspective, adults spontaneously recognize abstract roles
more easily in social as opposed to nonsocial scenes [54], reasonmore easily about social as op-
posed to nonsocial relations [55,56], focus more on abstract patterns in social as opposed to
nonsocial learning [27,57], and easily identify abstract causes to explain sparse social behavior
[58]. Moreover, although no physical pattern defines social relations like help or harm, people
are so practiced at recognizing these relations that doing so has hallmarks of automatic percep-
tion rather than deliberate reasoning [59–61].

These tendencies simplify how people mentally represent the inputs to RL. When lacking exper-
tise, model-based learners must reason about relationships between elements of a task and ep-
isodic learners must recall details of a scene. By contrast, experts can draw on semantic
concepts describing relations or episodes, retrieving precompiled abstractions that leave details
behind [48]. By automatically mapping new situations to these concepts, people lower the costs
of social learning while maintaining intermediate flexibility.

Simplifying relations
When people interact with others, they might represent their actions in terms of specific individ-
uals they encounter. If a student learns that the action approach Dr Smith leads to reward, they
must explicitly transfer their knowledge to Dr Jones by considering commonalities between
them – that is, encoding relations between them in an explicit world model. However, when
people encounter familiar social concepts, they can effortlessly construe their actions in terms
of abstract roles (approach the professor). In this manner, people can effortlessly use state
abstraction along with a matching abstract action set.

This shift in representation can make model-based planning easier and more powerful. First, fa-
miliar abstractions reduce the cognitive costs of planning by eliminating irrelevant details [20].
Trends in Cognitive Sciences, May 2024, Vol. 28, No. 5 433
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Second, they allow model-based learners to generalize their plans to new situations in the same
domain [62]. Third, expertise helps learners plan more deeply, evaluating the consequences of
their actions farther into the future. In tree search algorithms, learners choose actions by evaluat-
ing how actions lead to new states, which consequently branch into new possible actions and
states. Expertise lets people search more deeply ahead, in part because experts represent rele-
vant task features more sharply andmore quickly [63]. Accordingly, after extensive practice with a
task, people make more model-based choices and plan more deeply despite planning more
quickly [63,64].

Yet, people can also engage in flexible behavior without needing model-based planning at all. By
effortlessly recognizing social roles described by concepts, people may directly associate these
roles with model-free reward. For instance, by construing Dr Smith as a professor, a student
could easily generalize to a new professor (Dr Jones) without explicitly considering commonalities
or likely outcomes (Figure 1D). People can thus achieve complex behavior through a simple
algorithm (model-free learning) with abstract inputs (familiar roles). This strategy has successful
parallels in machine learning (Box 2).

In recent work, we found that humans indeed use model-free learning with abstract inputs [65].
Participants learned to approach characters who led to rewarding stock dividends. Some char-
acters owned the same stocks as one another, meaning that participants could use a cognitive
map of task structure to generalize across them (Figure 2). However, characters also enacted
the familiar social concept of helping, with one character in the role of helper and one in the role
of recipient of help. Some, but not all, helpers led to the same stocks. Nonetheless, if people
intuitively encode others as helpers and have rewarding experiences with these individuals,
they may learn that helpers offer high model-free reward value. In turn, they may generalize this
Box 2. State abstraction in model-free RL algorithms

Existing machine learning algorithms have enabled generalization using model-free learning combined with state abstrac-
tion. For instance, deep Q networks' combine a deep neural network with model-free RL. The deep neural network learns
abstract state representations from high-dimensional inputs, such as identifying relevant states of a computer game from
all pixels onscreen. The value of these states is learned through model-free reinforcement. This approach produces
human-level performance in multiple games [109]. Notably, after training, some game states that are perceptually dissim-
ilar, but similar in value, have been found to elicit similar encoding in the network, highlighting abstract representations of
states based on goal-relevant task features [109].

Alternatively, a model-free learner can identify an underlying function that links states to rewards; for instance, moving from
west to east might predict more uncomfortable weather. Here, a linear regression model could predict the value of new
states by regressing previous rewards onto previous east–west locations. Real-world cases usually involve more complex
and unknown functions. Algorithms such as Gaussian process regression – a nonparametric Bayesian approach – can
estimate the shape of arbitrarily complex functions, assigning similar value to similar states [110,111]. This algorithm
can remain model-free by directly mapping features of states to value [112,113]. At the same time, it can generalize to
new states (e.g., a point further west than previously explored).

Humans appear to use this strategy as well, generalizing across physical or conceptual distance by learning the degree of
correlation between nearby states [114,115]. However, Gaussian process regression can be computationally costly [113],
and less is known about the cognitive costs of such learning in humans.

Given vast experience with social interactions, it is possible that adults have already learned key functions mapping social
interaction to reward, allowing another form of easy model-free generalization. For instance, people may directly learn the
value of traits in a low-dimensional trait space, such as learning that generous individuals tend to be valuable partners.
People could therefore generalize to new partners, assigning model-free value to new individuals perceived as generous.
This possibility could explain why learning about generosity evokes prediction errors signals in ventral striatum, overlapping
with but dissociable from reward prediction errors [26]. This kind of model-free function learning could complement more
flexible uses of gist memory as described in the main text. Social expertise would thus let people simplify interactions into
abstract features that serve as inputs to Gaussian process regression.
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Figure 2. Dissociating model-based generalization and generalization through social concepts. In the task used
in [65], participants learned about characters who owned stocks in one of four companies (Brown Parrot Corporation, Purple
Porcupine Company, Green Elephant Industries, and Red Octopus Group). Characters appeared in pairs across different
scenes, which enacted the abstract concept of help in different ways. By choosing a character on each round,
participants received a dividend from that character’s stock; dividends could be small or large. A traditional model-free
learner would interact with the same individual again after receiving a large reward. For instance, after choosing Character
#2 and receiving a large reward, this learner would only choose Character #2 again. A model-based learner would use
task structure to generalize across the first two scenes: after choosing Character #2 in Scene 1 and receiving a large
reward, this learner would also become more likely to choose Character #4 in Scene 2, since this character leads to the
same stock. A concept-based learner would construe all characters as helpers or recipients of help and use these roles to
generalize across all three scenes: after choosing Character #2 and receiving a large reward, they would also become
more likely to choose Character #6 in Scene 3, since this character is also a helper, even though this character cannot
lead to the same stock. Figure adapted, with permission, from [65].
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knowledge to new helpers, even when new helpers own a different stock and cannot lead to the
same reward. Indeed, after choosing a helper and getting rewarded, participants weremore likely
to choose a new helper, even when there was no reason to do so based on task structure. When
compared with a control condition with no social roles, participants who saw social roles
responded more quickly despite generalizing more, breaking the traditional link between abstract
generalization and cognitive cost.

Social concepts thus simplified reward generalization, letting people effortlessly represent an ab-
stract role (choose helper) and attachmodel-free reward to it. People similarly learn the value of ab-
stract goals – which can be accomplished through multiple specific means – via model-free
reinforcement [66]. People may also learn the model-free value of other abstractions described
by social concepts, such as social groups, with consequences for intergroup behavior [30,33]. No-
tably, even traditionalmodel-free learning requires some degree of abstraction, such as abstracting
stimulus identity over space and time (the blue slot machine) or maintaining a constant representa-
tion of an individual’s identity (TomCruise) acrossmodalities such as seeing their face or name [67].
The inputs to model-free learning can thus exist on a spectrum of abstraction from concrete motor
movements (go left [68]) to individual identity (Tom) to broader categories (helpers).

Nonetheless, learning about more abstract concepts offers more flexibility than traditional model-
free learning about one stimulus, because learners can generalize across individuals who share
an abstract role. Conversely, it is less flexible than model-based learning because learners do
Trends in Cognitive Sciences, May 2024, Vol. 28, No. 5 435
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not explicitly consider paths to reward. This strategy would therefore be adaptive in an environ-
ment whose distribution of rewards coincides with one’s existing concepts – which is often the
case, given that concepts are developed to explain consistencies in one’s environment [42].
However, when the environment diverges from one’s concepts, this strategy can lead people
to overgeneralize prior learning. For instance, generalizing from Dr Smith to all professors may
cause a student to waste valuable studying time if they approach a professor who is disengaged
and unhelpful.

While social learning offers a useful prototype for studying the role of expertise in complex learn-
ing, people also use expertise to recognize abstractions in nonsocial domains [53], suggesting
everyday learning might often be easier than anticipated by existing research. Studies of
human RL often illuminate how people learn about new relationships in unfamiliar settings through
effortful reasoning. Yet, everyday learning often occurs in familiar settings. Expertise may simplify
learning in these cases, which may explain patterns observed in prior work. For instance, people
make more model-based choices when a task is framed with an intuitive narrative [69]. These
findings have been interpreted to mean that narratives clarify potential confusion about task in-
structions [69], but familiar narratives also make it conceptually easier for people to represent
task structure and follow contingencies [70]. Outside the laboratory, aging individuals often
show higher susceptibility to scams [71], but this decline is countered by high financial literacy,
which tracks semantic abilities like vocabulary and word retrieval [72]. As people gain expertise
and distill episodes into semantic concepts, they may shift from effortful control to easier use of
abstractions for model-based and model-free learning.

Simplifying details
People can represent the behavior of others with specifics, such as a waiter recalling a customer
leaving a US$20 tip. Retrieving such episodic details supports one-shot learning and context-
dependent choice [8,19]. Yet, social life offers an overwhelming number of details to track across
countless contexts. Here too, conceptual expertise can help by automatizing abstraction,
allowing people to simplify representations of interactions.

Theories of memory assert that people encode events not only as verbatim memories, reflecting
exact details of an event, but also as simpler gist memories, reflecting abstract meaning [73]. Gist
memories reduce details (a 30% or 70% chance of rain) to relative rankings (more likely vs. less
likely), termed ordinal gist, or even simpler categories (some chance vs. no chance), termed cat-
egorical gist. People typically gravitate to the simplest representation they can use [74], and the
gist representation people use shapes their decision-making. For instance, teens who consider
risk categorically (no risk is better than some) make fewer risky choices than teens who consider
risk in relative terms (less risk is better than more) [75]. Crucially, experts rely on gist more than
novices; while novices focus on details, experts extract meaning [74,76].

As social experts, humans easily simplify details of interactions (‘he tipped $20’) to abstract
trait concepts (he was generous), losing details while gaining meaning (Figure 1E) [77,78].
Again, this abstraction is cognitively efficient and seemingly automatic: people spontaneously
encode trait impressions even under cognitive load and with no explicit goal to do so [79].
These impressions bear the hallmarks of gist memories: people encode trait impressions in
parallel with verbatim memories of social events [77], and trait memories last longer than verba-
tim memories [79–81]. Moreover, we recently found that people gravitate to the simplest im-
pression available, representing social feedback as ordinal gist (more competent, less
competent) or categorical gist (competent, incompetent), and make choices based on gists
rather than episodic details alone [82].
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By reducing data to a lower-dimensional space [83], gists require lower representational com-
plexity and lower encoding costs than verbatim details [20,21,84]. Moreover, by automatically ap-
plying familiar dimensions rather than deliberately identifying new ones, gists reduce the
attentional costs of identifying reward-predictive features of an event [22].

Although people might use gists to predict model-free value – for instance, learning that generous
partners are valuable (Box 2) – people can also draw on individual interactions using gist-based
RL, maintaining some flexibility of episodic RL but using a lower-dimensional space. Accordingly,
gists allow easy one-shot learning. After learning how much an individual donated to a charity,
perceivers can reduce that amount to a gist of some or none, facilitating inferences of generous
or stingy, respectively. Perceivers draw on these gists when choosing whether to reward others
for their generosity, even when accounting for verbatim memory [82].

Social gists also support context-dependent choices, letting people choose partners based on
the traits required by a given setting. Abstract concepts identify not only commonalities across
separate entities but also distinctions from other abstract concepts [85]. For example, the con-
cept adult groups all humans above a certain age while distinguishing them from humans
below that age. Through abstract concepts, people can easily track meaningful patterns in be-
havior across settings while ignoring irrelevant details. For instance, people learn context-
dependent traits (‘this person is competent at math but not verbal questions’) even when they
fail to learn equivalently complex but less familiar reward contingencies (‘this person delivers
high reward when playing with one slot machine but not another’) [78]. In real-world social net-
works, students turn to peers high in empathy to share personal news but turn to peers high in
positive affect to have fun [86]. Despite unique experiences with one another, students form
shared impressions of empathy and positivity and use these impressions to make context-
dependent choices.

Finally, after mapping behaviors onto pre-existing dimensions (generous), people can flexibly de-
cide how to use those gists later, much as episodic learners can flexibly identify relevant details of
a scenario. For instance, after learning that an individual is kind, perceivers might avoid that indi-
vidual as a teammate for a competitive game [87]. Moreover, because trait concepts form a
broader knowledge structure, they again allow people to generalize in novel settings. People
know how different traits relate to one another in others around them, such as knowing that
someone cooperative is likely to be trustworthy but not assertive [88,89]. People therefore gen-
eralize their learning to new traits, such as assuming that a person who is polite is also friendly
[90], allowing social choices in new settings [78]. Similarly, people can spontaneously infer
goals in others [91] to generalize knowledge to new situations [92] with little effort.

Again, expertise can help people accurately predict others’ behavior when the environment
matches pre-existing concepts but can harm predictions when the environment betrays pre-
existing concepts. When a simplified representation of an environment has been previously valu-
able, people persist in using it even when it is no longer optimal [93]. Accordingly, gist-based
learners may automatically reduce behaviors to familiar dimensions even when those dimensions
are no longer relevant. Indeed, people choose generous partners in economic tasks even when
doing so is not optimal [26,27]. Moreover, when people watch players cooperate or defect across
economic games in multiple contexts, they ignore thousands of possible patterns characterizing
others’ choices and focus on patterns reflecting common human motives (e.g., greed, risk
aversion) [92]. Consequently, perceivers predict a player’s choices more accurately when
choices reflect those motives, but not when choices are engineered to reflect the opposite
motives, which are statistically identical but psychologically unlikely.
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Outstanding questions
How does conceptual expertise
influence RL in nonsocial domains?

How do reward learning and concepts
co-develop? Reward might prompt
comparison between distinct events,
leading people to recognize common-
alities and develop abstract concepts.
Alternatively, reward – whether extrin-
sic or due to intrinsic curiosity – might
directly refine state representations,
leading to concepts that describe
states with similar value.

How does social expertise relate to
social well-being? Is effortless
learning or effortful planning more
predictive of adaptive social choice
and positive relationships across
different situations in daily life?

Do people form model-free value asso-
ciationswith abstract social groups, be-
yond semantic associations typically
considered to comprise stereotypes?
Would different interventions be needed
to change behavior as a result?

How do goal-directed and model-free
abstract learning interact? Do people
sometimes use goal-directed reason-
ing to recognize relevant concepts
and then deploy those concepts in a
model-free manner?

How and when do social concepts
emerge across development?
Concluding remarks
Social learning is complex. Traditional accounts suggest people must either follow simple model-
free reward contingencies or pay a cost to use flexible learning computations. Although people
use these strategies, humans also have social expertise that can simplify learning problems,
allowing flexible behavior with low cognitive cost. People effortlessly and spontaneously recognize
abstract social concepts that describe roles (mentor, helper), behaviors (generous, competent),
and other social patterns. These concepts reflect semantic knowledge, representing generalized
abstract relationships without retrieving specific details. People can use pre-compiled abstract
concepts to facilitate planning, associate abstract social roles with model-free reward, or encode
the gist meaning of an interaction, allowing them to generalize reward and make adaptive choices
with cognitive ease. Although these strategies cannot replace every kind of complex social learning,
they can support flexible behavior through simple cognition in familiar settings, complementing
more elaborate learning [1,2]. However, people risk automatically mapping new situations to famil-
iar abstractions even when they are not optimal, posing a limit to flexibility [93].

This framework demonstrates how RL supports complex social behavior, bridging social cogni-
tion with computational principles of RL. While this proposal applies to any domain where
humans have expertise, social interaction offers an informative test case; although not all humans
are chess or bird experts, nearly all humans have social expertise andmust navigate complexities
of social interaction. Social learning can thus serve as a prototype for studying how people nav-
igate complex everyday environments, building a bridge for future research between the study of
concept development and the study of adaptive choice (see Outstanding questions).
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